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Thanks to the ROOT team!
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Compact Muon Solenoid’s 
NanoAOD

• Data format for proton-proton collisions


• Root-based, O(1kB) per event


• High Level (not all particles, hits, tracks, etc.)


• Data stored as scalars and Jagged arrays of 
primitive types (int, float, bool, …)
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Compact Muon Solenoid’s 
NanoAOD

• Data format for proton-proton collisions


• Root-based, O(1kB) per event


• High Level (not all particles, hits, tracks, etc.)


• Data stored as scalars and Jagged arrays of 
primitive types (int, float, bool, …)


• Contains “Collections” for muons, electrons, 
jets, generator-level particles, with cross-
references via index-positions in linked 
collection


• Coll. structure via naming convention


• Important collections: ~two-dozen variables
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What did I do?

• Built an RDataFrame-based analysis framework 

• targeting a specific analysis, potentially for multiple related ‘decay channels’ 

• Wanted something fast, NanoAOD-compatible, using python as the interface 

• Needed to be scalable - quick tests (fast turnaround to make decisions), scale up 
to processing billions of events with O(100) systematic variations 

• Development partially overlapped bamboo (2019 - 2021 principally) 

• SPOILERS: Discovered how not to do a lot of things! <- good chunk of this 
presentation
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Lesson 10:

Don’t work alone

• solo-graduate student (all PostDocs/

GradStudents finished and left group early 
on)


• Few resources/knowledge of what other 
RDF users were doing (learned of bamboo 
~6 months deep in dev)


• All the good documentation, examples, 
etc. are very appreciated!
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“1 out of 5 -  would not recommend”

credit

https://c2.staticflickr.com/4/3208/2506936869_7906a8f7ee_b.jpg
https://c2.staticflickr.com/4/3208/2506936869_7906a8f7ee_b.jpg
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• Running systematic variations in the same 
event loop


• Framework implementation predating 
Vary  


• Manual book-keeping via string 
substitutions


• Weight-based: Histo1D(model, 
variableA_NOM, wgt_SYST_N)


• Non Weight-based: Histo1D(model, 
variableA_SYST_M, wgt_SYST_M)
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Lesson 9: 

https://indico.fnal.gov/event/23628/contributions/241029/
https://indico.fnal.gov/event/23628/contributions/241029/
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Lesson 8: SCALING
• I should have watched scaling behaviors 

• Early prototypes with systematics worked 
fine


• Scaling up to the full set of ~75 systematic 
variations made memory use a concern!


• batch resources ~ 2GB/core


• histograms copied per thread


• Good idea: backup plan for running either 1, 
some, all variations easily (keeping an eye 
on file-output/tracking/merging!)


• Good idea: Atomic-storage ala 
boost::histogram (narf) 
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Scaling Behaviors - Typical Physics Problem

https://xkcd.com/1162

https://github.com/bendavid/narf
https://github.com/bendavid/narf
https://xkcd.com/1162
https://xkcd.com/1162
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Lesson 8: SCALING

• Categorization via graph-branching 

• Analysis required multiple categories - (0, 1, 2, 3, 4+ b-tagged jets) x (4, 5, 6, 7, 8+ jets)  x (~5 
systematics) — systematic dependent quantities being categorized on!


• Driven by external constraint imposed: 1D histograms (PI concern about confusing other 
students - admittedly, ROOT histogram n-dimensional slicing/projection is not the friendliest)


• Very costly to define all the histograms for all categorized-branch nodes!


• Setup time of minutes, event loop execution in 10s?!?


• Prefer ND Histos!
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Lesson 6: CONFIGURATION
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Lesson 6: CONFIGURATION
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Lesson 7: NON-UNIFORM SCALING DIMENSIONS

• Non-uniform scaling dimensions are a good way to trip up 

• During analysis, we needed to take a few samples and split them into 2-4 sub-samples 

• Different weight scaling, naming, histogram grouping for statistical inference 

• Thought it would be great (‘cute’) to still run over the sample once… 

• So I introduced some additional splits in the computation graph node… a lot of nontrivial work 
and effort in order to do this for ‘production-ready’ case 

• Voilà, 4x the histograms… and ~4x the memory (16GB for most important background when 
using 1D histograms over many variables simultaneously for 8 threads!) 

• Also lead to discovery of a problem with simultaneous Snapshots 
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failure to apply KISS

https://github.com/root-project/root/issues/7500
https://github.com/root-project/root/issues/7500
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Lesson 6: CONFIGURATION

Steering code via configuration files is especially useful 
with JIT-ing via RDataFrame’s python interface


Store quantities to Define or Filter-on in e.g. YAML* **


Round-trip bookkeeping without modifying everything 
by hand…


semi-arbitrary code execution (yes, use safe-load!)
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* (Almost) Turing complete? Eh…
** Roundtrip read/update/write with comments is great, though

Computed and  
round-trip’d 
to the YAML
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Indicates branch names of inputs for this variation

Variation type indicators for handling in the analyzer
Flag for that backup plan to limit number of systematics in a run

JIT’d Definitions and weights for final histogram filling 
Flexibility > Runtime execution 
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Lesson 5: All-In-One 
BOOKKEEPING

All-in-one meta-info storage is a double-edged sword


 - Easier to look at information coherently


 - More work to parse and compare simple information 
(i.e. just number of events between samples)


 - In the end, a win IMO
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Lesson 4: STRUCTURE

• Analysis Framework retained for too long 
array-at-a-time manipulation (see left)


• MoA (Mess of Arrays), AoS, proxies?


• gist: structs versus arrays - lose a lot of 
RVec convenience


• python proxies (bamboo)


• RDataFrame-native proxy/object-like 
view (What’s possible? how much could/
should be Experiment responsibility? e.g. 
Schema - NanoAOD has ~1 new version 
per year)
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Define(“MyJet_mask”, “Jet_pt > 30 && abs(Jet_eta) < 2.5…”) 
Define(“MyJet_pt”, “Jet_pt[MyJet_mask]”) 
Define(“MyJet_phi”, “Jet_phi[MyJet_mask]”) 
Define(“MyJet_eta”, …) 
… 
Define(“MyMuon_pt”, “Muon_pt”

sketch of select_jets.py

https://gist.github.com/NJManganelli/d3e85526b2a4413d75d8ef199c64b650
https://indico.fnal.gov/event/23628/contributions/240756/attachments/154856/201530/220509_ROOT_bamboo.pdf
https://gist.github.com/NJManganelli/d3e85526b2a4413d75d8ef199c64b650
https://indico.fnal.gov/event/23628/contributions/240756/attachments/154856/201530/220509_ROOT_bamboo.pdf
https://github.com/NJManganelli/rdframework/blob/main/src/rdframework/objects/jets.py#L212-L237
https://github.com/NJManganelli/rdframework/blob/main/src/rdframework/objects/jets.py#L212-L237
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Lesson 3: NumPy-LIKE
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• Hard to adjust to numpy-like array 
manipulation


• How to create two distinct sub-collections 
with complex multidimensional-cuts?


Simple Example: Create two sub-collections 
of muons, which should not overlap, but have 
different pT, isolation, and Id requirements…

Define("iso_mu_mask", 
            "Muon_pt > 30 && abs(Muon_eta) <= 2.4 &&   
              Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask", 
            "Muon_pt > 3 && abs(Muon_eta) <= 2.4 &&
              Muon_looseId == true”)
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Lesson 3: NumPy-LIKE
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• Hard to adjust to numpy-like array 
manipulation


• How to create two distinct sub-collections 
with complex multidimensional-cuts?


Explicitly via boolean mask inversion!

Define("iso_mu_mask", 
            "Muon_pt > 30 && abs(Muon_eta) <= 2.4 &&   
              Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask", 
            "Muon_pt > 3 && abs(Muon_eta) <= 2.4 &&
              Muon_looseId == true && 
              iso_mu_mask == false")

Also applicable to awkward-array!
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if type(lookupMap) == str: 
    #It's a string name, see if it's been declared in the ROOT instance 
    try: 
        if str(type(getattr(ROOT, lookupMap))) == "<class 'ROOT.map<string,vector<TH2Lookup*> >'>": 
            pass 
    except: 
        ROOT.gInterpreter.Declare("std::map<std::string, std::vector<TH2Lookup*>> {0};".format(lookupMap)) 
    iLUM = getattr(ROOT, lookupMap)

Lesson 2: C++         Python

• Trial By Fire to learn


• ROOT.gROOT.ProcessLine, 
ROOT.gInterpreter.Declare, hasattr, 
getattr, isinstance


• Progress Bars, Look Up Tables (e.g. TH2)


• Testing C++ instantiated objects working 
correctly

19

ROOT.gROOT.ProcessLine(".L SomeFunctions.cpp”)

Essential, extremely useful!
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• pdb (pdb.set_trace()) is essential when working from python 

• Can’t always separate out simple test-scenario -> good way to dive into middle of code exec. 

• C++ cout for event-loop checks 

• More than once I forgot to prevent that code’s execution being skipped! 

•

Lesson 1: DE-    -ing and Code-building Code

20
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• pdb (pdb.set_trace()) is essential when working from python 

• Can’t always separate out simple test-scenario -> good way to dive into middle of code exec. 

• C++ cout for event-loop checks 

• More than once I forgot to prevent that code’s execution being skipped! 

• Ship-in-a-Bottle Syndrome                                                   biggest time-sink of analysis dev 

• Building C++ code inside python-formatted strings -> Not ideal, but not always preferable to 
move to pure C++ 

• No easy/direct access to the the ‘environment’ inside the event loop -> “BreakPoint” Proposal?

Lesson 1: DE-    -ing and Code-building Code
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–Robert A. Heinlein

“I never learned from a man who agreed with me.”
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ROOT and the !ROOT Ecosystems

• Benchmarking the code and coming out fastest is fantastic 

• Factor 3x* is small compared to the O(1000)-O(10000) improvement RDF/coffea 
have against TTree::Draw-based frameworks (I know of several) 

• Benchmarking the user experience is harder, but for many analysts, this time 
probably dominates! 

• Emphasis on new features like Vary, collection-aggregates/object-like 
proxies, DefinePerSample, SampleInfo, Distributed, etc. is the right way to go at 
this stage 

• As much UX-enhancements as performance-enhancements

23

*Compiled? 
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RDataFrame Coming Soon

https://indico.fnal.gov/event/23628/contributions/241029/attachments/154864/201541/RDF%20%40%20ROOT%20workshop%202022.pdf
https://indico.fnal.gov/event/23628/contributions/241029/attachments/154864/201541/RDF%20%40%20ROOT%20workshop%202022.pdf
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Multi-Dimensional Histograms
• Easy, composable N-Dim histograms (N = 5, 9, …) 

ala boost::histogram are really great (ROOT7 
convergent evolution? Categorical, circular, …) 

• Combination with UHI (standards) is extremely-
powerful, game-changing… 

• I’ve been converting my workflows to this 

• Doubtful I’ll ever look back… 

• ROOT: histo.GetYAxis().SetRange(yBinLow, 
yBinHigh); histo.GetZAxis().SetRangeUser(… ; … 
histo.ProjectY(…) 

• h[{“mva”: “merged_vTriplet”, “HT”: hist.tag.Slicer()
[700j : 1500j : sum], “nbtag”: hist.tag.Slicer()[3j : 4j : 
sum]}].project(“dataset”, 
“mva”).plot1d(overlay=“dataset”)
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CMS Work In Progress (APS2022)

All plots from 
one single 
histogram 

(9D)

some dozen lines: slicing + plotting

https://uhi.readthedocs.io/en/latest/index.html
https://xkcd.com/927
https://uhi.readthedocs.io/en/latest/index.html
https://xkcd.com/927
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BACKUP
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• Bulk of analysis in end-to-end mode (no 
intermediate snapshots), ~8 threads


• Huge, branching computation graph with 
thousands of Define and Filter calls


• Without Vary, a good amount of time in 
python configuring the Define/Filter/
HistoXD calls on the RDF nodes

27



Nick Manganelli

Distributed and Scaling

• Potential with Distributed + Vary + DefinePerSample/SampleInfo to have a 
single call that executed an entire analysis processing (all variables x cuts/
categories x systematic variations x samples…) 

• What happens if this produces larger-than-memory results on the user? 

• Writing histograms to disk in efficient way from the worker-node? 

• Writing NumpyArrays out?

28
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Plotting

• It takes 74 * 50 histograms to make one 
PANEL in this plot ( x 5 panels/canvas x 5 
btag categories x 3 channels x 2 years x 
dozens of variables)


• ROOT’s memory management made this 
painful early on, with Projections and 
Rebinning galore (not shown here!)


• Frustrating text scaling in different-sized 
pads (-> font precision 43 had its own quirks)


• Ticks, labelling them when margins -> 0


• aggregating and rebinning from python -> 
expensive for loops -> Multi-Dim Histograms 
preferable!
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ML-training

• SOFIE might greatly simplify the issue of 
inference


• For training, being able to use the plethora 
of expertise, examples, code being 
developed by the huge data science and AI 
research communities would be really 
welcome -> “Generator” interface?
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